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ABSTRACT
T h i s work is a computer simulation of the control of flexi -

ble robot arm. The dynamic equations for a single-link flexible
robot arm have been derived rigorously. Th is arm has two
degrees of freedom in rotation and one in translation so that the
workspdce i s three-dimensional. The payload is simulated by
attaching additional mass to the arm at a specified location. The
governing equations of the plant and the measurements are non-
linear. The process of control i s divided into two stages: coarse
control and fine control. Based on the pole-placement method, a
linear observer is constructed for fine control. The numerical
results of several cases are presented here. The effects of damp
ing and sampling rate are also discussed.

LNTRODUCTION
Most of today’s industrial robots can lift only about one

twentieth of their own weight. Compare that to the human arm
which can li f t about ten times its own weight. The top slew velo-
city of a robot arm is typically around one meter per second
while the top slew velocity that can be achieved by the human
arm during a task such as throwing a baseball i s around 48
meters per second. Although these comparisons may not be fair,
the point stands that there is vast room for the improvements in
the performance of robotic manipulators. O n e of the most
elementary problem in robotics is that of accuracy. The repeata -
bility of most of today’s robots is on the order of 1 mm over the
working space, the accuracy of absolute positioning (for the end
effector to reach the commanded point) may be off as much as 1
cm. The present solution to the problem of accuracy is to make
robot smctures very s t i f f and rigid. Another problem in robotics
i s control. Nowadays, in order to position the end effector to the
commanded location the angles that each of the robot’s joint
must assume are computed and then the joints are driven simul-
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taneously to said angles. After the joint angles assume those
computed values, the robot i s presumed st i f f enough so that the
end effector will thus (by dead reckoning) be in the intended
location. Therefore. not only the robots arc built to be. massive
and unwieldy, the analysis and the controls in robotics are based
on the assumption that the robot arm is just a collection of rigid
bodies.

I t is desirable to build a lightweight robot arm which has a
long reach and the capability to carry heavy payload and to
move rapidly. In order to meet these requirements, the robot arm
has to be flexible. In other words, even the static deflection of
the robot arm has to be taken into account for positioning accu-
racy; more importantly, the high moving speed of the arm
implies the inertia forces acting on the arm are very large and
the stability of the robot arm becomes a critical problem which
requires the engineers to design a more sophisticated control sys-
tem. In the area of control of flexible robot arm, Cannon and
Schmitz [l]published the pioneer work in 1984 . In that work
the mathematical modeling and the initial expreriments have
been carried out to address the control of a flexible member (one
link of a robot system) where the position of the end effector
(tip) is controlled by measuring that position and using the meas-
urement as a basis for applying control torque to the other end of
the flexible member (joint). Also, i t is worthwhile to mention the
works of Harashima and Ueshiba [2], Wang and Vidyasagar [3,
41, Sangveraphunsiri [5], Book et al [6]. In all those above-
mentioned works, there are two things in common: the one-link
robot arm, with its hub rotating about z-axis, sweeps the horizon-
tal x-y plane; the flexible arm i s modeled as a beam whose
deflection is represented by a series in terms of eigenfunctions
(normal modes).

In this work, the computer simulation of the control of a
single-link flexible robot arm is presented. The hub of the arm
can rotate about z-axis, specif ied by the joint angle 9(r) , and y’-
axis, specified by the joint angle +(r) . Also, the arm can slide
along its own longitudinal axis. So that the working region of the
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end effector is a three-dimensional space instead of a circle on
the horizontal plane. The flexible arm is divided into a number
of beam elements and then treated by finite element method to
obtain the governing equations for the mechanical system. By
doing so, it i s more flexible and natural to incorporate payloads
into the system. Moreover, it will be seen later that the system
(plant) , ipcluding the measurement of the tip position, is non-
linear and there i s no attempt being made to linearize that.

PROBLEM DESCRIPTION
The single link robot arm being considered in this work i s

shown in Fig. 1. The arm consists of two parts: the hub, which is
modeled as a rigid body, and the flexible beam, which i s further
divided into n beam elements. The flexible beam is in the s!lape
of a slim hollow cylinder with length I,outer radius r,, and
inner radius ri. A rectangular coordinate system (x, y, z), in
which the z-axis i s opposite to the direction of gravity, i s
employed in th is work. The configuration, in which the axis of
the hub, as well as the axis of the beam inits undeformed state
i s parallel to the x-axis, is named the home configuration. The
differences in position between the deformed state and the unde-
formed state of the beam in the home configuration am the dis-
placements (U, , U,) refemng to the home configuration as indi-
cated in the figure. Not only the flexible beam can deform, the
hub can rotate about the z-axis and the y'-axis, which i s perpen-
dicular to the axis of the hub and the z-axis, and also slide along
its own axis. The rotations of the arm about the z-axis and the
y'-axis are specified by two timedependent variables,
e(t) and Mr), respectively. However, in this work, the sliding of
the arm i s specified by a constant parameter, d, which i s deter-
mined by the given target position, as being discussed later.
Since the flexible beam is modeled as n beam elements, i t has
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Fb. 1 Single Link Rob01 Ann In It8 Home Conliguntion.

n+l nodal points. .The generic i-thnodal point (i= 0, 1, 2, ...
,n) is associated with the lumped mass, mi , and, referring to the
home configuration, the coordinates ( Xi + d, U,.(i), U8(i) ). The
payload i s simulate4 by fhe m a s s attached to the end point (the
n-tb nodal point). m

a
, as iqdicatcd in the figure. The computer

software developed at hh3S allows the payload to be can id at
al l nodal points, hence, from now on unless otherwise stated, the
lumped mass, mi , stands for the sum of the payload carried at
the i-thnodal point and the mass of the beam distributed to that
nodal point

x

Flg. 2 Slngle Llnk Robot Arm In ita Actual Conflguntion

TRANSFORMATIONS
The position vector of any point on the beam, when it i s in

the home configuration, can be expressed as

x = E] (1)

cos4 0 sin4 1F]
The rotation of the hub about the z-axis and the y'-axis
transforms the arm from its home configuration to its actual
configuration, as shown in Fig. 2. The transformation may be
expressed by the following equation

I t i s noticed that Q is an orthogonal transformation matrix which
has the following properties

Q-' = Q'

det (Q) = 1
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h other words, any vector v' , in the actual configuration, can
be transformed into V , the corresponding vector in the home
configuration, through V = QTV' .

Now the velocity and the acceleration, V' and a' , can be
obtained as

=&+2Qv+Qa ,

INERTIA FORCE AND GRAVITY
The total force acting on a generic nodal point, f , i s equal

to the sum of the inertia force and the gravitational force acting
on that point, i.e. ,

where m i s the effective mass lumped at that nodal point; and g,
the constant of gravity, i s equal to 9.81 m/ sec2 . The
corresponding force in the home configuration, f , can be
obtained as

f= fy =QTfk ]
=-m { R + R v + a + g [ ~ + ] }sin+ ,

For example, when 4 = x / 2 and&=6;=0 , the following is
obtained

u y + e( x + d) - e*vyIf y =-

However, correspondingly, the inertia force obtained by Cannon
and Schmitz [l],.Hamhima and Ueshiba [2], Wang and
Vidyasagar [3,4] may be written as

fy = -mI.;+ecx + dl} , (12b)

in other words, the nonlihear' term rniZUy has been omitted. Th is
example indecates that the expressions of the inertia force and
gravity obtained in t h i s work contain no approximation and are
more general than thosc obtained in [I,2, 3, 41.

11

FINITE ELEMENT ANALYSIS

The generic i-thbeam element connects the (i-1)-th nodal
point and the i-thnodal point, as shown in Fig. 3. Based on ele-
mentary beam theory, the governing equation of this element
may be written as [7, 8, 91:

where the local stiffness matrix of the i-thelement i s expressed
as

112 -12 61; 61; 1

E is the Young's modulus; li =Xi -Xi-, ;I i s the moment of
inertia; for the i-thnodal point, Vi i s the displacement vu( U, ),
Si = dV; / dX is the slope, fi is the acting force f,( f,),M, i s
the moment about z ( - y )-axis.

The global stiffness matrix of the beam is the assembly of
al l the local stiffness mat r ices . The boundary condition of a can-
tilever beam is that the displacement and the slope are zero at
the fixed end. After th is boundary condition i s imposed, the
goveming equations for the beam may be expressed as

% U + K b S = f , (15)

K,U+KdS=M .
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Since there is no moment acting on the beam, i.e. ,M = 0, eqn.
(16) implies that

s = -K;*K,u . (17)

Substituting eqn. (17) into eqn. (15), the following i s obtained

KU=f , (18)

where the stiffness matrix, K, can be calculated as

K=K, -K*K;'& .
In view of eqn. (9), eqn. (18) can be rewritten as

U+m-'KU=F ,

where m i s the mass matrix , i.e.,

m=&ag. [ml,mz, . . . mn ] ;

_and F i s the vector of forcing terms . If Ui stands for the dis -
placement Uy ( U, ) at the i-thnodal point, then Fi stands for
the forcing term Fy ( F, ) and

It i s noticed that, if €Iand @ are given as functions of time, eqn.
(20) can be readily solved by invoking the Runge-Kutta method
or other appropriate numerical methods. However, as i t will be
seen later, 8, 0,@,and 6 are regarded as state variables and the
governing equations for the flexible robot arm as a control prob-
lem will be formulated in the next sections .

TARGET
Consider the displacements, Uy(i) and U,(i) , the velocities,c

y

(i)p d &(i), the joint angles, 0 and @ , the angular velocities,
9 and@, as the state variables of the system. Consider the

angular accelerations, 6 and 6 , or the torques , Te and T+ , as
control variables of the system. The purpose of the control is to
find the control laws that make the system converge to a steady
state which meets certain prescribed requirements. If the solu-
tions are converging, then, as time approaches inifinity,the time
derivatives of all the variables approach zero, and

According to eqn. ( 20 ), it i s seen that

u;=o ,

d K U / =-8 s i n d .

In order for the.tnd effector to reach the given target position
( x', y', z1 ) ,eqn. (2) becomes

] p "1. (26)
s indcose f -sing - c o s ~ f c o s d
sin# sind & s d --cos+f sin#I:]=[ cos+' o sing

@f = e' = tan-'(y'lx' ) ,

which can be rewritten as

(27)

(28)

(29)
where 1 i s the length of the flexible beam, A IO Vi(.) is the dis -
placement of the end effector. From eqns. (25, 28, 29) , Vi, d,
andd canbedetermined.

( 1 + d )' + A' = (x1)' + @')*+ (2')' = (r')' ,

cos#(l+d) + s indA = z' ,

TORQUES
The torque about z-axis, Te ,and the torque about y'-mis ~

Tg , can be evaluated as

where mh, and 4, are the moment of inertia , the mass, and
the length of the hub, respectively; X*. y'. Z * are ?he coordi -
nates of the nodal point, which can be calculated by eqn. (2);
f;, f;, f:are the forces acting on that nodal point , which can
be calculated by eqn. (8).

It i s noticed that eqns. (30, 31) are very complicated since
the effect of deformation on the torque is incorporated in the for-
mulation. Ifthe effect of deformation on the toques i s neglected,
then To and T+are reduced to

(32)T,= T; =  sin'^ + 2sinWskb) rI ,
T, = T; = (6 - sin+xs+b*) rl

n

i-0
(33)

where

For converging solutions , it is seen that, as time
approaches infinity,To and T i approch zero, and

(34)

which i s a measure of the effect of deformation on the torque in
the static case.
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If i t i s feasible to consider 6 and ;d as control variables, then
i t i s straightforward, as it willbe seen later, to formulate the con-
trol laws; moreover, the torques, To and T,, can be calculated
according to eqns. (30, 31) taking the effect of deformation into
consideration. On the other hand, if toques are taken as the con-
trol variables and one is willing to make an approximation, i.e. ,
to neglect the effect of deformation on the torques, then eqns.
(32, 33) can be expressed as

(35)

(36)

where a stands for all the state variables. Now, eqns. (35, 36)
and eqn. (20) form a complete set of governing equations for the
control system. However, i t i s felt that the effect of deformation
on the torques should be considered in the treatment for the sake
of consistency. In this work, the angular accelerations are taken
as the control variables and in the forthcoming paper, the
torques, which include the effect of deformation, will be taken as
the control variables.

li= gl(a)Ti + g2(a) ,
6 = h,~; + h2(a) ,

where

(49)

u l =e ,

u 2 = i . * (51)

.and the nonvanishing components of the two (2n+2)x(2n+2)
matrices, AI and A2. are

From eqns. (40, 41), i t i s seen that the angular accelerations,
0 and 6 , are taken as the control variables; also,all the nonlinear
t e r m s are contained in the functions N1 and N2 which have the
following property

From now on, the governing equations of the system, eqns. (40,
41), may be written symbolically as

THE MEASUREMENTS
I t i s assumed that the position of the end effector

( x,,, y.. 2.' ) can be measured. Recall eqn. (2) and eqn. (26) as
follows:

* .

Then the difference between the position of the end effector and
the target position can be obtained as

Define a vector, 6 , as follows:

I t is seen that 6 is a nonlinear function of the state variables. If a
Taylor series expansion of 6 i s p f o m e d about the final posi -
tion, (e = d, 4 = 4,U, = 0, U, = U! 1, the hear expressions of
S, and 6, are obtained as

245



61 6, = Hlal= U,(n)

+ [ s i n ~ ( l + d ) - c o s ~ U ~ ( n ) ) 8 ',

S, 6, = H~UQ= Uz'(n) - (l + d )< . (60)

Now the governing equations and the measurements of the sys-
tem in linear form can be symbolically written as

& = A a + B u , (61)

&=Ha , (62)

where A, B, H are constant matrices (vecton), based on which
the estimator will be constructed.

1

Fig. 4 The Block Diagram of Coarse Control

THE CONTROL
Now, the system (plant) is represented by

a = A a + Bu + N( al, %, ul, u2 ) ,

6=S(a)=Ha ,

and, based on A, B, a d H , one wishes to construct a controller
represented by

u = - c & , (66)

where C and L are called the control gain ind estimate gain,
respectively; dr , the estimates of a, are the state variables of the
estimator (observer); and, with the symbol "*" on top of
A, B, and H , it i s emphasized that the number of beam elements,
ti , for constructing estimator may be different from (far less
than) that for simulating the system. If there had been no
nonlinear function, N, in eqn. (63) and no difference between
&a)andHa in eqn. (64), then the properly obtained gain
matrices (vectors), C and L, would have guaranteed the conver-
gency and the stability of the solutions, in other words, the end
effector eventually would have reached the target position
asymptotically. Now, on the contrary, it i s noticed that N

approches zero and 6 approaches Ha only if ( 8, I$,U,, U, )

approach ( d,d. 0, U! ). Therefore, eqns. (65, 66) may be
referred as finecontrol; qn. (66) i s then named the tine control
law. As coarse control i s concerned, which i s the first-stage con-
trol, eqns. (65, 66) arereplacedby.

where the last two equations may be named the coarse control
laws ; clr c2, dl, and d2 are positive constants; the nonlinear
function R in eqn. (67) may be omitted. One shifts from coarse
control to fine control at time tl as soon as the following condi-
tion i s met

I &tl) -6f I r; e= , I &tl) - V I s v , (70)

where 8' and $' are input parameters set by the designer of the
control system. In this work, 0' =41'= 5'.

The control gain and the estimate gain can be calculated by
using the pole-placement formulae, first stated by Bass and Gura
[lo]. The detailed derivations are presented by Friedland [ll].
The operational procedures are briefly outlined as follows. First,
find the 2ti + 2 eigenvalues of the A-matrix by solving

det [ s I - A ] = O . (71)

Since A i s a real matrix and damping i s not included in this
analysis so far, all the eigenvalues are pure imaginary and any
eigenvalue's complex conjugate i s also an eigenvalue. Further-
more, i t i s noticed that there are two zero-eigenvalues which are
associated with the rigid rotation of the arm. Therefore, the
2A + 2 coefficients of the Characteristic polynomial can be found
as

where wI i s the largest eigenvalue, y i s the second largest
eigenvalue, ... etc. Let the desired eigenvalues of
A - B C a n d A - L f i be denoted by -b;+jwi and -y,+jo i ,
respectively. Then the coefficients of the characteristic polynomi -
als of A - &C and A -Lfi can be found respectively as

p + z +&
lsu+l+ &

2s"+ . . . + &,+2

A
= ( s + & n ( s + Xi - iw i )( s + Ai + joi ) , (73)

i-1

P + 2 + ii,su+J + i i p + . . ' +
A

= ( s + yol2n( s + y, - io, )( s + yi - j ~ i. (74)

It i s seen that Xi ( yi ) are the displacements of the poles. For
th is work, it is proposed, as a result of experiences, to determine
the displacements of the poles by the following formulae

i=l

= e+'"/* , (75)

,-5cs/* , (76)Ylk = YU-1 = Yo
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where k = 1,2, . . . and 2k 5 ri ; b, yo, E, and 6 are input
parameters control gain and the estimate gain can be obtained by
using the Bass-Gura formula as

where

1 a1 a2 a3 . . .

0 0 0 o . . .
0 0 0 0 . . .
0 0 0 o . . .i

(79)

V = [A', A' fir, (A')'#, . . . (b')2+1fiT]-
1

. (81)

I t i s noticed that the existence of U and V imply that the system
is controllable (controllability) and observable (observability),
respectively. The block diagrams of the system and the estimator
for mane control and fine control are shown in Fig.4 and Fig.5,
respectively.

I"
Control Law

U - A

u=- Ca -'
, - aObserver
t

1- - A

!at,)
W)-

l

Fig. 5 The Block Diagram of Fine Control

SAMPLING RATE AND DAMPING
Rewrite eqns. (63-66) as follows

dr = A a - BC4+ N (a, 4 4 ) ,

&= ( A - BC -LA )a+L ~ U ),

(82)

(83)

which are the governing equations for the plant and the observer.
In computer simulation, one may solve eqn. (82) and eqn. (83)

together by Runge-Kutta method, in other words, the plant and
the observer are treated as integral parts of an unified system. On
the other hand, one may also rewrite eqns. (82, 83) as

a=Aa+N(a ,u )+Bu ., (84)

&=(A - LA)&+'Bu +Ls , (85)

and, in solving eqn. (84) for a in the time interval I t', t '+ ht 1,
u is regarded as a constant, i.e. ,

u = 4 q t j ; (86)

and, similarly, in solving eqn. (85) for 4 in the same time inter-
val, u and 6 arc regarded as constants where

6 - S[ a(t') ] . (87)
In other words, the informations of u and S are calculated and
transmitted to the plant lobserver once in a time interval of At ,
hence, At andI/&may be named the transmission time and the
sampling rate, respectively. I t will be seen later that the sampling
rate can not be too small, otherwise the system will become
uncontrollable.

The governing equations for the mechanical system, eqn.

mU+KU=mF , (88)

in which damping is not included. Suppose the damping ratio of
the structurc i s experimentally found to be p ( p=0.002 for
steel), what will be the governing equations for the mechanical
system including damping ? The answer i s

" U + D U + K U = ~ F, (89)

where D , the damping matrix , is to be constructed as follows .
First, solve

(20), can be rewitten as

det ( K - a%) = 0

to obtain the eigenvalues ai and the corresponding eigenvectors
Zi (i= 1, 2, ... n). In eqn. (90), fA stands for the mass matrix
of the structure itself. The eigenvector Zi should be orthononnal -
ized to observe the following properties

Z:hiZj=ZFKZj=O , i # j

z:mi=1 ,
ZfKZi =a! .

Then the damping matrix is obtained as

One may prove that D has the following properties

ZTDZ, = O , i # j

ZTDZ; =2Wi . (93)

The software developed at NBS does have the capability for the
user to h i d e whether to include damping or not.

NUMERICAL RESULTS
In this section, for illustrative purposes, the results of

several cases are presented. Common to all those cases, the fol-
lowing parameters, unless otherwise stated, are set to be
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(a) material : aluminum

Er6.895~10' kPa ,
p = 0.2713~10 -~ k g l ~ m . ~,

(b) geometry of the flexible a m
ro = 1 in. = 2.54 cm ,
ri = 0.9 in. = 2.286 cm ,

(c) payload

ma =40 lbf = 177.92 Newton ,
(d) target position

8' = 0' = 450 ,
(e) initial joint angles

e(o)= oo , ~ ( o )= 9oo .

n = 12 (plant )

(f) number of beam elements

ri =4(0bS€%Vfl)

(g) coarse control parameters

cl =c~=401sec 2 , d,=dz=40/- .
(h) fine control parameters

&,= 25Isec , yo= 26.251~~~, e = c = 4 .
-In Fig. (6-12), the joint angles e($) (solid lines) and the tip
angles erip ( @I,) (solid lines with marks) are shown as functions
of time. The tip angles are defined as

e'rp. = tan-'(y.'/< )

Q',= cos-? Z:l4(,.P + C Y 3 + (Z:f )

(94)

(95)

For Fig.6,

1 = 60 in. = 152.4 cm , r' = 65 in. = 165.1 cm ,

c1= c2 = 60/sec 2 , dl = dz = 20lsec ;

and it is noticed the settling t i h e , r,, i s about 3 seconds and
# = 43.07' , the ratio of payload with respect to the weight of
the flexible arm, R, is about 11.4 .
For Fig7 (Fig.8),

1 = 120 in. = 304.8 cm ( 240 in. = 609.6 cm ) ,

r' = 130 in. = 330.2 cm ( 250 in. = 635.0 cm ) ,

# = 42.3O ( 34.8O ) ,
R = 5.7 ( 2.85 ) ,

r, = 4.2 sec. ( 5.0 sec. ) .

0.0 1.2 2 4 a.6 4.8 6.0
TIME IN SECOND

TIME IN SECOND

In Fig.9 (Fig.10). the length of the flexible arm and the r-
coordinate of the target 8n increased respectively to

I= 360 in. = 914.4 cm ( 600 in. = 1524.0 cm ) ,

r' = 370 in. = 939.8 cm (620 in. = 1574.8 cm ) ;
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the outer radius and the inner radius of the arm are increased to
r, = 2 in. = 5.08 cm and ri = 1.9 in. = 4.826 cm while the thick-
ness of the cylinder st i l l kept at 0.1 inch = 0.254 cm ; and other
parameters arc changed to :

CI=c2=40/secZ ( lO/Sec2) ,
&,= 25lsec ( I W e c ) ,
yo = 26.25lsec ( 10.51s~) ;

and it i s found that

fl = 41.2' (34.2' ) ,
R = 0.925 ( 0.555 ) ,

f, = 5 sec. ( 20 sec. ) ,

85.0

75.0

65.0

w 65.0
a3 45.0
0
g 95.0

25.0

15.0

6.0

-5.0

w

0.0 1.2 2 4 9.6 4.8 8.0

5 msec . Both attempts failed to yield a converging solution.
Finally, by setting At = 4 msec, i.e. , sampling rate = 250/sec, a
converging solution i s obtained and shown in Fig.12, in which i t
i s seen that the settling time i s increased from 5 seconds to 10
seconds.

60.0

60.0

40.0
W
Yg 30.0

t 20.0

w
0

m
10.0

0.0

-10.0
0.0 1.2 2 4 5.8 4.8 6.0

TIME IN SECOND

TIME IN SECOND

TIME IN SECOND

For all those above-mentioned cases, the plant and the observer
are treated as integral parts of an Wed system, in other words,
the sampling rate is very large. In order to investigate the effect
due to the sampling rate, the solutions corresponding to those in
Fig.10 are shown in Fig.11 except that the sampling rate is now
equal to lOO/sec (Ar = 10 msec.).Comparing Fig.10 with Fig.11,
the differences in solutions, including the settling time, are
noticeable. I t has been tried to reproduce the solutions
corresponding to those in Fig.8 by setting Ar = 10 msec and At =

Flg. 0 Rrrponrrr of jolnt angles and tlp angles
t - 360 Inchor, r = 2 Inchor, r, -1.0 Inchrr, fi - 370 Inches,
cl- C, -1018.8, dl-4 - 40/8OC, 4 - 251rrc. yo - 2&25/rrc,
4 - 5 - 4 .

DISCUSSION
In this work, the single-link flexible robot arm has two

degrees of freedom for rotations ( e and Cp ) and one degree of
freedom for sliding ( d ) so that the space, which can be reached
by the end effector, is three- dimensional. In the analysis, 8 and Cp

are treated as variables, but the sliding, d, is treated as a parame-
ter, i.e. , a constant determined by the given target position.

The goveming equations of the system (plant) and the equa-
tions npresenting the measurements, which have been derived
rigorously, are nonlinear. No attempt whatsoever has been made
to linearize those equations. However, the estimator (observer)
was constructed based on the linear version of the system. Also,
it i s noticed that number of beam elements used to model the
plant, n, and the observer, R, may be different, for example, for
those cases reported in this work, n = 12 and ri = 4. Th is means
the observer i s linear and involves very few variables. For practi -
cal purpose, it implies that real-time control of flexible robot arm
is feasible.
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0.0 4.2 8.4 126 16.8 2 l.O
TlME IN SECOND TIME IN SECOND

110.0

100.0

w.0
80.0

70.0
W

Qg 60.0

z 60.0

* 40.0

30.0

20.0

10.0
0.0 4.2 8.4 12.8 16.8 21.o

TIME IN SECOND
Fb. 10 Rrrponrrr of Jolnt rnglor and tip anglrr

I- 600 Inchor, r = 2 Inchor, q - 1.0 Inches, fi - 620 Inchor,
C, - C2 - lO/roJ, d, -+ = 40hrc, A, - lO/roc, yo - 10.51roc,
4 - & - 4.

Ifdamping is included in the system, one may prove that
even a very simple coarse control law serves the purpose to con-
trol the flexible robot arm by setting the joint angles at pre-
calculated values and letting nature ( in t h i s case, damping ) take
its course. However, the settling time i s too long to be practicaL
On the other hand, as i t becomes clear in this study, the combi-
nation of the coarse control and the fine control works even if
the system has no damping at all.Generally speaking, as it has
been pointed out by Book et al 161, damping in the robot ann
made of most practical materials. i s influential on higher modes,
but not on the dominant mode of the arm. It is suggested that
engineers do not count on damping for the purpose of controlling
the flexible robot ann.

One of the significant findings in this study is that the sam-
pling rate ( or the transmission time ) i s very crucial in the con-
trol system. If the sampling rate i s reduced too much, then the
solution becomes unstable, i.e. , the system is no longer controll -
able. T h i s phenomenon has been reflected in the numerical
results of a couple cases discussed in the previous section.

0.0 4.2 8.4 12.6 16.8 21.0
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